osmium

Stable	Atomic mass*	Mole
isotope		fraction
¹⁸⁴ Os	183.952 4891	0.0002
¹⁸⁶ Os	185.953 8382	0.0159
¹⁸⁷ Os	186.955 7505	0.0196
$^{188}\mathrm{Os}$	187.955 8382	0.1324
¹⁸⁹ Os	188.958 1475	0.1615
¹⁹⁰ Os	189.958 447	0.2626
¹⁹² Os	191.961 4807	0.4078
ste A	' ' ' ' ' ' ' ' ' '	

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope
Less than 1 second

Important applications of stable and/or radioactive isotopes

Isotopes in medicine

1) ¹⁹²Os can be used for the production of the medical radioisotope ¹⁹⁵Pt.

Isotopes in geochronology and earth processes

1) Some ¹⁸⁷Os is radiogenic, having formed by beta decay of radioactive ¹⁸⁷Re with half-life 4.2 x 10¹⁰ a. Variations in the ¹⁸⁷Os/¹⁸⁶Os and ¹⁸⁷Re/¹⁸⁶Os ratios are used for geochronology, for example to determine the ages of the Earth, moon, and meteorites. Because Re tends to be most

- concentrated in metallic phases, this method is commonly used to date iron meteorites and some types of terrestrial ore deposits.
- 2) Variations in the ¹⁸⁷/¹⁸⁶Os ratio can be transferred from rocks to fluids such as magmas and groundwaters, providing a useful tracer for fluid sources and migration paths. Meteorites and meteorite dust impacting the Earth have different Os isotope ratios than terrestrial rocks and sediments, such that ¹⁸⁷Os/¹⁸⁶Os studies provide evidence of continuing extraterrestrial additions to the Earth over geologic time, as well as a method for prospecting in the sedimentary record for large meteorite impact events that may have affected life on Earth.

Figure 1: Artistic rendition of a major impact event (extraterrestrial object striking the Earth). Deposition of debris from the incoming object could cause anomalous ¹⁸⁷Os/¹⁸⁶Os ratios to appear in thin layers of sediment on Earth.

Figure 2: The graph shows an abrupt decrease in this ratio in marine sediments deposited around 35 million years ago, consistent with other evidence for a major impact event at that time. The magnitude of the Os isotopic anomaly may be related to the size of the impacting body, though with large uncertainties.